Order Instituting Investigation on the Commission's Own Motion into the Operations and Practices of Southern California Gas Company with Respect to the Aliso Canyon storage facility and the release of natural gas, and Order to Show Cause Why Southern California Gas Company Should Not Be Sanctioned for Allowing the Uncontrolled Release of Natural Gas from Its Aliso Canyon Storage Facility. (U904G).

I.19-06-016 (Filed June 27, 2019)

CHAPTER I

PREPARED SUR-REPLY TESTIMONY OF DANIEL NEVILLE ON BEHALF OF SOUTHERN CALIFORNIA GAS COMPANY (U 904 G)

TABLE OF CONTENTS

[.	INTRO	ODUCTION1
II.	MS. F	ELTS' REASONS ARE UNSUPPORTED1
	A.	"Reason 1: SoCalGas' Identified 'Tubing Packer' Completion Was of No Use when Boots & Coots Attempted to Kill Well SS-25."
	В.	"Reason 2: SoCalGas Falsely Claims that It Isolated Well SS-25 from Exposure to Groundwater."
	C.	"Reason 4: SoCalGas's Did Not Show That Its Integrity Management Program Was Adequate Prior to the October 23, 2015 Well SS-25 Incident."
	D.	"Reason 5: SoCalGas Stated It Installed a Remote Well Kill System in Testimony But Did Not Explain in Response to SED's Discovery Why It Did Not Use That Remote Well Kill System to Kill Well SS-25."
	Е.	"Reason 6: SoCalGas Stated It Could Remotely Shut-In Wells to Prevent or Mitigate Leaks in the Wellhead or Surface Piping But Did Not Answer SED Discovery Asking Whether It Used Such Practices on Well SS-25."
	F.	"Reason 7: SoCalGas's Statement that It Used Effective Leak Remediation Practices is Contradicted by Extensive Evidence."
	G.	Recordkeeping Related Reasons 8-14
	Н.	"Reason 8: As A General Practice, SoCalGas Did Not Maintain Records of Daily Site Inspections."
	I.	"Reason 9: SoCalGas Used Lack of Anomalous Weekly Surface Pressure Readings as a Justification To Conduct No Further Related Investigations on SS-25."
	J.	"Reason 10: SoCalGas Provided Incomplete Monthly Well Site Inspection Records from 2006 to October 23, 2015, and No Monthly Well Inspections from 1973 to 2006"
	K.	"Reason 11: SoCalGas Provided Incomplete Annual Leakage Survey Work Orders from 2006 to October 23, 2015, and No Annual Leakage Survey Records from 1973 to 2006."

	L.	"Reason 12: SoCalGas Incorrectly Claimed that Annual Temperature Surveys, and Noise Surveys Were Sufficient to Monitor and Detect Leaks."	13
	M.	"Reason 13: SoCalGas Provided No Records of Pressure Gauge Readings from Before the Incident at Aliso Canyon."	17
	N.	"Reason 14: SoCalGas Provided No Records Showing Casing Integrity Inspections from 1973 to October 23, 2015."	17
Ш.	CON	CLUSION	18

CHAPTER I

2 3

1

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23 24

PREPARED SUR-REPLY TESTIMONY OF DANIEL NEVILLE ON BEHALF OF SOUTHERN CALIFORNIA GAS COMPANY (U 904 G)

I. INTRODUCTION.

The purpose of my prepared sur-reply testimony on behalf of Southern California Gas Company (SoCalGas) is to address the Reply Testimony submitted on behalf of the California Public Utilities Commission's (Commission) Safety and Enforcement Division (SED) by its witness, Margaret Felts on March 20, 2020 (SED Reply Testimony). Specifically, I address the statements made by Ms. Felts in Reasons 1-14 cited by SED as supporting its argument that SoCalGas has not met its burden to show cause as to why the Commission should not find that SoCalGas violated Public Utilities Code § 451. Each reason is refuted herein below for lack of factual support.

II. MS. FELTS' REASONS ARE UNSUPPORTED.

A. "Reason 1: SoCalGas' Identified 'Tubing Packer' Completion Was of No Use when Boots & Coots Attempted to Kill Well SS-25."

Ms. Felts' claim that the tubing packer completion was "of no use when Boots and Coots attempted to kill well SS-25" is incorrect. Boots and Coots did in fact utilize the tubing string as a conduit to pump kill fluid in all kill attempts.³ Although the kill attempts were not successful, the tubing packer completion served its intended purpose: providing a conduit for kill fluid. As I state in my opening testimony:

The tubing/packer completion provides two primary benefits: 1) a means to mechanically isolate the well from the storage zone through the use of a wireline-

¹ SED Reply Testimony (Felts) at 2-16, 19.

² Id. at 2-3.

³ Blade Report (Main) at 144-153.

set downhole plug, and 2) a means to hydraulically isolate the well from the storage zone by providing a conduit for kill fluid.⁴

Ms. Felts' testimony ignores this purpose of the tubing packer completion.

To support her contention that the tubing packer completion was "of no use," Ms. Felts states that mechanical isolation was not appropriate, nor did SS-25 have plugs to allow mechanical isolation at the relevant times.⁵ The relevance of these facts to the purpose of the tubing packer completion is unclear. Mechanical isolation using a wireline set downhole plug was not employed for any of the kill attempts by Boots and Coots; as Ms. Felts also acknowledges,⁶ this method was not appropriate to isolate the well from the storage zone due to the nature of the leak. Boots & Coots employed hydraulic isolation for all kill attempts and, although isolation was not successful, the tubing packer completion did in fact provide a conduit to pump kill fluid from the surface to the storage zone within the inner tubing; i.e., the tubing packer completion served its purpose.

B. <u>"Reason 2: SoCalGas Falsely Claims that It Isolated Well SS-25 from Exposure to Groundwater."</u>

Ms. Felts states, "Specifically, Mr. Neville misleadingly says that 'Well SS25 had 11-3/4" surface casing cemented to a depth of 990 feet, which provided the barrier between the fresh water sources and potential oil/gas zones at lower depths." The alleged falsity perceived by Ms. Felts appears to be based on a misinterpretation of my opening testimony regarding the cementing the 11-3/4" surface casing to a depth of 990 feet. The purpose of the above statement was to describe the cemented surface casing as it provides a barrier between fresh water and potential oil/gas zones at lower depths.

⁴ SoCalGas Opening Testimony Ch. I (Neville) at 1.

⁵ SED Reply Testimony (Felts) at 2-3.

⁶ Id.

⁷ Id. at 3.

By virtue of having been drilled through groundwater, SS-25 could be expected to have exposure to groundwater, the exposure of which is the cemented 11-3/4" surface casing. The purpose of surface casing in SS-25 was for the protection of the groundwater by providing a barrier between fresh water sources and potential oil/gas zones at lower depths. In SS-25, this barrier consisted of the cemented 11-3/4" casing set to a depth of 990 feet, which encompassed the base of fresh water. "Reason 3: SoCalGas Did Not Sufficiently Pressure Test Well SS-25 to Operate it Safely."

Ms. Felts' claim that SS-25 was not sufficiently pressure tested in 1973 is based on a misunderstanding of reservoir pressure as well as the process of pressure testing the casing utilizing workover fluids to replicate operational pressure in a gas environment. Ms. Felts states, "The 1973 test pressure was slightly above the 3150 psi operating pressure of the underground storage field at the time. However, the 1973 test pressure was also below the reservoir pressure of 3600, a pressure to which the well could be exposed."

Ms. Felts correctly notes the Aliso Canyon maximum reservoir pressure of 3600 psi, which is specified in the Project Approval Letter (PAL) issued by DOGGR. In her testimony, Ms. Felts notes the test pressure in the 1973 workover was 3400 psi, which she describes as "slightly above the 3150 psi operating pressure," and concludes the test pressure was insufficient because it was less than the reservoir pressure of 3600 psi. When SS-25 is in operation however, its casing is in a gas environment and its maximum surface pressure is 3150 psi while its bottom hole pressure is 3600 psi. The test pressure of 3400 psi is in fact sufficient for a surface pressure of 3150 psi.

⁸ SED Reply Testimony (Felts) at 4.

⁹ Id

¹⁰ Id. at 4-5.

The pressure tests conducted in 1973 at the time of conversion were conducted at test pressures above the maximum pressures expected in the entire casing string during operations. This was so because the 1973 pressure tests were conducted using workover fluid having a liquid pressure gradient to replicate the operation of SS-25 having a gas pressure gradient. The pressure testing conducted during the workover utilized a testing method referred to as "block pressure testing," a method by which packers and/or bridge plugs are used to divide the wellbore into different depth segments. The depth segments account for the fact that a column of liquid exerts more pressure at a given depth than a column of gas. A summary of the block pressure tests from the 1973 workover is shown in Table 1 below.¹¹

Table 1

8525'-surface
6000'-surface
1500 psi for 23 minutes
2000 psi for 25 minutes
2000 psi for 25 minutes
2000'-surface
2000 psi for 27 minutes
2000'-surface
3100 psi for 25 minutes
2000'-surface
3100 psi for 33 minutes

The test pressure exerted at a particular depth is determined through a calculation utilizing the liquid gradient. For example, the test pressure at surface is equal to the applied

pressure of 3400 psi. Accordingly, the test pressure at 1000 feet is equal to the applied pressure

of 3400 psi plus the hydrostatic pressure of 450 psi, or 3850 psi. Accordingly, the test pressure

at 8525 feet is equal to the applied pressure of 1500 psi plus the hydrostatic pressure of 3836 psi,

or 5336 psi. 12

Ms. Felts further states the 1973 pressure test was insufficient based on a pump pressure achieved by Boots & Coots during one of the kill attempts. She states, "The highest well kill fluid injection pump pressure reached was 6500 psi during the Nov 6, 2015 kill attempt." She

¹¹ See SoCalGas Reply Testimony Ex. VII-2.

¹² Assumes typical salt water gradient of 0.45 psi/ft for workover fluid.

¹³ SED Reply Testimony (Felts) at 5.

fails to account, however, that the pump pressure of 6500 psi achieved by Boot & Coots is irrelevant in that the pump pressure was applied to the inlet of the coiled tubing used to remove the hydrate plug prior to the kill attempt. The Boots & Coots November 6, 2015 activity report indicates the riser pressure was held between 2700 psi and 3000 psi. ¹⁴ The riser is attached to the top of the wellhead above the master valve, and thus the 2700 psi to 3000 psi represents the pressure inside of the tubing, not the casing, during the process of running the coiled tubing to clear the hydrate plug.

Finally, Ms. Felts argues:

In addition, prior to the failure of Well SS-25, SoCalGas had ordered new compressors that would boost the compression for injection gas to 3400 psi, essentially boosting the maximum operating pressure to 3400 psi and rendering the original 1973 pressure test for the casing inadequate.¹⁵

SoCalGas was not planning to boost the maximum operating pressure at the wells to 3400 psi. The referenced EIR document discusses the *capability* of the proposed new compressors and states the "maximum *discharge* pressure of the gas injected into the reservoir is approximately 3400 pounds per square inch gauge." It is important to note that the discussion is in regard to maximum discharge pressure capability, where discharge pressure is measured at the compressors and some distance from the wells. Additionally, SoCalGas had no plans to inject above the CalGEM-approved reservoir pressure of 3600 psi, which equates to a surface operating pressure at the wells of approximately 3150 psi. Moreover, the new compressors were not in service at the time of the incident.

¹⁴ SED Reply Testimony (Felts), Bates No. SED_RT_0063.

¹⁵ Id

¹⁶ SED Reply Testimony (Felts), Bates No. SED RT 0064.

C. "Reason 4: SoCalGas's Did Not Show That Its Integrity Management
Program Was Adequate Prior to the October 23, 2015 Well SS-25
Incident."

Ms. Kitson responds to Ms. Felts' Reason 4 in her sur-reply testimony (Chapter III). It seems necessary to clarify that the reference in my opening testimony to "[a]s of October 22, 2015" means the practice was in place at that time, not that it commenced on that date. That is the date chosen for frame of reference because it is the day prior to the occurrence of the incident.

D. "Reason 5: SoCalGas Stated It Installed a Remote Well Kill System in Testimony But Did Not Explain in Response to SED's Discovery Why It Did Not Use That Remote Well Kill System to Kill Well SS-25."

The reason SoCalGas did not use the remote well kill system to kill SS-25 is because the wellhead was accessible for the connection of temporary piping, and thus the remote well kill system was not needed. Per my opening testimony:

As an additional safety measure, SoCalGas had in place a remote well kill system so that SoCalGas could kill the well *in the event the well site was inaccessible*. The system consisted of valves and piping connected to the wellhead, separate from the flow side of the wellhead, specifically to allow remote well kill. The piping ran to a remote area from the wellhead so that pumping equipment could be staged away from the immediate wellhead area, if necessary.¹⁷

The remote kill system consists of permanently connected piping to the wellhead and, in the event unsafe conditions prevent access to the wellhead, provides a connection that is already in place. In the case of the SS-25 incident, the wellhead was accessible for the purpose of connecting temporary piping and thus the remote kill system was not needed.

Ms. Felts states that "SED also does not fully understand why Boots & Coots did not have access to the remote kill system, which would seem to be a good option to use when a rig

¹⁷ SoCalGas Opening Testimony Ch. 1 (Neville) at 7 (emphasis added).

could not be safely moved over the well due to the desire not to ignite the gas streaming from the well." Boots & Coots did in fact have access to the remote well kill system, however, chose not to use the remote well kill system. The Boots & Coots October 30, 2015 activity report shows the tubing and casing kill laterals being removed and the wellhead being accessed. In addition, well kills are conducted utilizing a pump truck located next to the well rather than a rig moved over the well.

Ms. Felts' comparison to the P-44 incident, when the remote kill system was used, is inapposite.²⁰ That event involved a seal failure on a coiled tubing unit (specialized equipment for certain well work) and the wellhead was not accessible due to safety concerns.²¹

E. "Reason 6: SoCalGas Stated It Could Remotely Shut-In Wells to Prevent or Mitigate Leaks in the Wellhead or Surface Piping But Did Not Answer SED Discovery Asking Whether It Used Such Practices on Well SS-25."

Ms. Felts states that "SoCalGas avoided answering the request for records of when these safety systems had been used to shut-in Well SS-25 by simply saying that it did not keep records." SoCalGas did not avoid answering the request, or even fail to answer the request; SoCalGas' response was that such records are not kept. SoCalGas stated in the response to SED's DR 47, "as a general practice, SoCalGas did not keep a record of instances when surface safety systems shut-in a well." Ms. Felts states this practice is "a failure in itself since such events have been indicative of leak events requiring some sort of operating response by SoCalGas and documentation." Per my opening testimony, safety systems were designed to

¹⁸ SED Reply Testimony (Felts) at 7.

¹⁹ SoCalGas Reply Testimony Ex. III-3, AC CPUC SED DR 16 0025636.

²⁰ The similarities cited by SED in response to SoCalGas Data Request 10 Question 2 are not factors that would warrant the use of the remote kill system. *See* Exhibit I-1.

²¹ SED Reply Testimony (Felts), Bates SED RT 0112.

²² SED Reply Testimony (Felts) at 8.

²³ Id. at 8, Bates SED_RT_0019.

²⁴ SED Reply Testimony (Felts) at 8.

shut-in the well to prevent or mitigate leaks in the wellhead or surface piping.²⁵ These safety systems could close for other reasons as well, either through loss of instrumentation pressure during normal operations or simply manually triggered prior to maintenance work on the surface piping. Consistent with this, leaks identified during daily or monthly inspections were input into Maximo as corrective workorders; the method of isolation, however, was not typically recorded.

F. <u>"Reason 7: SoCalGas's Statement that It Used Effective Leak</u> Remediation Practices is Contradicted by Extensive Evidence."

The term "leak remediation" in the context of my opening testimony is used to explain SoCalGas' practices to identify leaks, mitigate leaks through isolation of the leak, and repair of the leak.²⁶

Ms. Felts states the 2014 Storage Integrity Management Program (SIMP) Report on well FREW 2 was "probably the most telling evidence proving the abject failure of SoCalGas's leak detection and repair program." Ms. Felts states that Frew 2 was not listed in the summary of casing leaks provided by SoCalGas to SED, 8 but that is so because Frew 2 did not have a casing leak. Indeed, Frew 2 had been converted to a tubing flow well in 1994, and thus was not at risk for a casing leak. The purpose of the SIMP program was precisely to identify wells that had wall loss as was found in Frew 2, the first well examined under the SIMP pilot. It is correct that temperature and noise surveys do not reveal casing wall loss. Temperature and noise surveys are not intended to reveal wall loss; these surveys are part of a monitoring program intended to detect leaks. Casing inspection logs such as USITs and HRVRT's are intended to monitor for

²⁵ SoCalGas Opening Testimony Ch. I (Neville) at 8.

²⁶ SoCalGas Opening Testimony Ch. 1 (Neville) at 6-8.

²⁷ SED Reply Testimony (Felts) at 8.

²⁸ In DR 11 SoCalGas identified instances of casing, casing component, and casing shoe leaks, including method of mitigation and method of repair. SED Reply Testimony (Felts), Bates No. SED_RT_0167 (DR11.01 SoCalGas Leak Well List Master).

wall loss. SoCalGas conducted casing inspection logs on wells during workovers starting in 2007, and SIMP was designed to conduct these logs on all wells as part of the program.

It is unclear why Ms. Felts takes issue with leak remediation utilizing casing patches,²⁹ which is an acceptable method of repair for certain leaks (see additional discussion in Chapter IV (Hower / Stinson), or why she suggests this was the only means of leak remediation employed by SoCalGas.³⁰ This is not true. Other leak remediation practices included remedial cementing, installation of inner casing strings, and plugging-and-abandonment of the well.

G. Recordkeeping Related Reasons 8-14.

In her testimony preceding Reasons 8-14, Ms. Felts refers to various "supporting" recordkeeping reasons. Her first supporting reason is related to her misunderstanding of when SoCalGas implemented the monitoring practices outlined in opening testimony. Ms. Felts uses the term "future practices noted by Neville," imisunderstanding the fact that SoCalGas practices mentioned in opening testimony had been in place prior to the incident that occurred on October 23, 2015, and not implemented the day before on October 22, 2015. Ms. Felts claims "recordkeeping for well SS-25 is surprisingly thin containing only 737 pages (through 2015)" and claims that "of these records 50% are receipts for work performed." I explain why this is irrelevant in my reply testimony, wherein I provide detail on the hard copy well file and its components, including Wellview, PI Historian, and Maximo. I further explain well file size by noting "a comparison is improper given that well files can have different contents based on the number and type of reworks conducted on a particular well. Records do not exist for work that

²⁹ SED Reply Testimony (Felts) at 9-10.

³⁰ SED Reply Testimony (Felts) at 9-11.

³¹ SED Reply Testimony (Felts) at 10.

³² Id.

³³ SoCalGas Reply Testimony Ch. VII (Neville) at 2-10.

has not been done."³⁴ As for the inclusion of invoices in the well file, they typically include information that is pertinent to know about the wireline work in the well, including details regarding the specific work performed on the well, such as the date of service, the type of service, and relevant findings.

H. <u>"Reason 8: As A General Practice, SoCalGas Did Not Maintain Records of Daily Site Inspections."</u>

SoCalGas conducted daily site inspections to identify signs of abnormal operating conditions, such as odors or sounds. These daily inspections, or "rounds," were not recorded; however, if follow-up was required, associated corrective workorders were created and maintained in the Maximo database. There are no regulatory requirements for daily site inspections.

I. "Reason 9: SoCalGas Used Lack of Anomalous Weekly Surface Pressure Readings as a Justification To Conduct No Further Related Investigations on SS-25."

Ms. Felts states the weekly pressure readings "were not kept in any particular order or in one location."³⁵ This is incorrect. SoCalGas maintained weekly pressure readings in an electronic database called PI Historian. As I explain in my reply testimony, "SoCalGas utilized PI Historian (PI) for collecting and maintaining operational data for the entire Aliso Canyon facility, including for the individual storage well."³⁶ Weekly pressure readings were date stamped and maintained in the PI Historian database, and thus were both in order and in one location.

Ms. Felts states SoCalGas "could not conduct analysis or identify trends that could have helped SoCalGas evaluate the condition of Well SS-25."³⁷ This also is incorrect. PI Historian

³⁴ Id. at 11.

³⁵ SED Reply Testimony (Felts) at 12.

³⁶ SoCalGas Reply Testimony Ch. VII (Neville) at 4.

³⁷ SED Reply Testimony (Felts) at 12.

provided a means to track or trend weekly well pressures. As I explain in my reply testimony, "PI provided users the opportunity to track or trend operating data over time. For example, weekly pressure of wells could be compared and plotted over time with PI." Thus, anomalous pressure readings could be investigated by trending the data. With respect to SS-25 particularly, as Ms. Felts notes, SoCalGas stated in a data request response that "[t]he weekly pressure records indicate that the surface pressure readings of [Well] SS-25 were not anomalous and consequently there was no reason for SoCalGas to conduct further investigations." Ms. Felts implies in her testimony that SoCalGas should have investigated non-anomalous well pressures. She does not elaborate what types of investigations SoCalGas would conduct on non-anomalous surface pressure readings. An investigation necessarily requires a predicate incident.

J. "Reason 10: SoCalGas Provided Incomplete Monthly Well Site
Inspection Records from 2006 to October 23, 2015, and No Monthly Well
Inspections from 1973 to 2006"

SoCalGas' practice at the time of the SS-25 incident was to utilize the Remarks section of the Maximo wellsite inspection workorder to record inspection results and to issue corrective workorders in the event an inspection required further maintenance. For example, the October 2015 monthly wellhead inspection workorder, the Remarks state, "Inspection Complete, No Substandard Conditions." Also for example, as noted on the July 2015 monthly wellhead inspection workorder, the Remarks state, "MAXIMOS ISSUED: #5907370, #5907371, #5907372." The comments section of the Maximo workorder was not typically used and thus they were largely left blank. A blank comment section, therefore, does not necessarily indicate

³⁸ SoCalGas Reply Testimony Ch. VII (Neville) at 4.

³⁹ SED Reply Testimony (Felts) at 12.

⁴⁰ SED Reply Testimony (Felts) at 12.

⁴¹ SED Reply Testimony (Felts), Bates SED RT 0485.

⁴² SED Reply Testimony (Felts), Bates SED RT 0473.

that a workorder is incomplete Also, as the Job Plan in the work order indicates below in line 30, a follow-up workorder is required should substandard conditions be found:

10

11

12

13 14

15

1

2

JOB PLAN NUMBER: AB1960-M-WELLS

JOB PLAN DESCRIPTION: AB1960 MONTHLY PRODUCTION FACILITY/WELL INSPECTIONS JOB OPERATIONS:

10 Inspect wells as follows:

a. Verify that appropriate signage is in place and legible. b. For well cellars with existing floor or grating, verify that floor or grating is in good condition so as to exclude people and animals, as applicable. c. Verify that well cellars are free of standing liquids. If liquid is present in any cellar, remove it using a vacuum truck or pump it to an appropriate location. d. Verify that roads leading to the wells are safe and passable. e. Check for signs of leakage or spills, corrosion and weeds/

- 20 Notify your supervisor immediately if any substandard conditions are found.
- 30 Create a follow-up work order for substandard conditions.
- 40 Reference California Code of Regulations, Title 14, Division 2, Section 1777(c)(1).⁴³

21

22

23

24

25

26

27

28

29

30

31

32

Regarding records that pre-date 2006, at the time of the incident, SoCalGas' records

20 retention policy for monthly wellhead inspections was six years.

> K. "Reason 11: SoCalGas Provided Incomplete Annual Leakage Survey Work Orders from 2006 to October 23, 2015, and No Annual Leakage Survey Records from 1973 to 2006."

SoCalGas' practice at the time of the SS-25 incident was to utilize the Remarks section of the Maximo annual leakage survey workorder to record inspection results and to issue corrective workorders in the event an inspection required further maintenance. For example, the Remarks noted on the June 2006 annual leakage survey workorder state, "6/23/06 Completed. No sign of sub-surface lks."44 The comments section of the Maximo workorder was not typically used and thus they were largely left blank. A blank comment section, therefore, does not necessarily indicate that a workorder is incomplete.

Regarding records that pre-date 2006, at the time of the incident, SoCalGas' records retention policy for annual leakage surveys was six years.

⁴³ SED Reply Testimony (Felts), Bates SED RT 0485.

⁴⁴ SED Reply Testimony (Felts), Bates SED RT 0489.

L. <u>"Reason 12: SoCalGas Incorrectly Claimed that Annual Temperature Surveys, and Noise Surveys Were Sufficient to Monitor and Detect Leaks."</u>

As stated in my opening testimony, SoCalGas had in place a variety of practices for the monitoring of leaks, including daily well site inspections, weekly well pressure readings, monthly wellhead inspections, and annual temperature surveys. Noise logs and tracer surveys were conducted as additional investigative techniques for anomalies identified in temperature surveys. Temperature surveys were just one of the various practices employed to monitor for downhole leaks. The tubing/packer well design provided a means of isolating the storage reservoir from the wellbore either mechanically or hydrostatically in the event a leak was confirmed through one of the monitoring methods.

Ms. Felts appears to construe anomalies on temperature surveys as leaks. This is not always the case. An anomaly on a temperature survey *might* indicate a leak, and thus it was SoCalGas' practice to investigate anomalies on temperature surveys. However, they were not always found to be leaks. Ms. Felts states the "1984 temperature/noise survey clearly shows a leak" and that "SoCalGas apparently did not investigate the leak any further. Instead it continued to run annual temperature surveys, and most of them continued to show the same leak." As mentioned in my opening testimony, it was SoCalGas' practice to investigate a temperature anomaly by conducting a noise log. Thus, the temperature/noise survey on April 11, 1984 was likely an investigation of a previous temperature anomaly. Remarks on the 1984 temperature/noise survey did indicate the *possibility* of a small leak: "possible slight shoe

⁴⁵ SED Reply Testimony (Felts) at 13-14.

⁴⁶ SoCalGas Opening Testimony Ch. I (Neville) at 12-13.

⁴⁷ SoCalGas Opening Testimony Ch. I (Neville) at 6. Note that investigative noise logs include a temperature gradient.

leakage migrating higher than 8440' (Note temperature break around 6800 ft)."48 SoCalGas continued to investigate by conducting an RA tracer survey on July 29, 1984. Remarks made on the RA tracer survey include: "possible slight leakage behind pipe from top perf at 8510' up to around 8430' and 8190'."49 Remarks made on the July 1985 temperature survey conclude that there was no leak. "Temp anomaly similar to, but breaks slightly higher than surveys of past several years. Noise logs 7-84, 4-84, 2-83 and RA. 7-84 indicated no leak above S1."50 Thus, SoCalGas did in fact investigate the temperature anomaly through the running of the 1983 and 1984 noise logs, as well as the 1984 RA tracer survey. The type of leak being investigated at the time is known as a "shoe leak," which is a leak of storage gas around the bottom of the casing through the cement column, that manifests as a cooling anomaly within and above the top of the caprock area of the gas storage zone. The 1984 RA tracer survey, which looks for evidence of gas movement through introduction of a tracer element into the casing shoe area, confirmed that gas was not moving above the S1 sand which is within the caprock but considered to be open to the storage zone. Additionally, the noise logs run in 1991, 2006, and 2012 over the casing shoe confirmed again that gas was not moving around the casing shoe. In other words, the suspicion of the shoe leak was investigated and disproved.

Ms. Felts states there was a leak identified in the 1991 temperature and noise surveys. A review of the August 12, 1991 temperature survey includes the comments: "Cooling (straight line) from MP down to S1 depths (see attached detail). Plan NL." These comments indicate a *possible* shoe leak and a plan to conduct further investigation of the temperature anomaly utilizing a noise log (i.e., NL). Indeed, a noise log was conducted on November 7, 1991, and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

⁴⁸ SED Reply Testimony (Felts), Bates SED_RT_0499.

⁴⁹ Ex. I-2

⁵⁰ SED Opening Testimony, Bates SED 01639 – SED 01642.

⁵¹ SED Reply Testimony (Felts), Bates SED RT 0500.

comments on the noise log were made on the 8/12/91 temperature survey as follows: "N/L of 11/7/91 showed some noise activity to base of MP w/ temp break at top of MP. Probable small gas leak." The 11/7/91 noise log does not make conclusions concerning a shoe leak and states: "Heard distant noise above 1200'. At 500' bled casing kill line on well 25A and heard even higher activity." These comments indicate that the noise at 1200' was due to surface noise and not a well integrity issue. SoCalGas continued to monitor the shoe area by conducting the annual temperature surveys and additional noise logs in 2006 and 2012. Although a shoe leak may have been suspected, it was investigated and ultimately was not confirmed.

Ms. Felts states that "A temperature survey from 2000 shows the same shoe leak and also seems to indicate leakage in a range above 1000 ft."⁵⁴ The temperature anomaly in the shoe area was similar to previous temperature surveys that had been subsequently investigated with noise logs and confirmed not to be shoe leaks. The temperature anomaly at 1000 feet is not typical of a casing leak. Leakage in the shallower section of the well, especially near the surface casing shoe, would be expected to manifest as pressure in the surface casing annulus. The surface casing annulus was monitored weekly by SoCalGas and did not show evidence of increasing pressure prior to October 23, 2015.

Ms. Felts states that the "2006 noise survey appears to show no leak, however, the quality of that one survey is suspect because the lines show no noise in the entire well, and appear to overlap each other at several points." A comparison of the 2006 noise log to the 1991 noise log does in fact indicate a quiet well in 2006. The 1991 noise log appears to pick up noise near the

⁵² SED Reply Testimony (Felts), Bates SED RT 0501.

⁵³ Id.

⁵⁴ SED Reply Testimony (Felts) at 14.

⁵⁵ SED Reply Testimony (Felts) at 14.

surface as evidenced by the gradual increase in the low frequency (200 HZ) reading as the tool approaches the surface. This increased reading or noise can be caused by factors such as wireline truck noise or gas flow in nearby surface piping. Comments on the 1991 noise log ("Heard distant noise above 1200". At 500" bled casing kill line on well 25A and heard even higher activity" does point to surface noise influencing the noise log. There are no comments on the 2006 noise log concerning surface noise. It is possible that surface noise did not propagate down the well to be picked up by the noise tool in the 2006 noise log. The 1991 noise log indicates noise at the casing shoe, whereas the 2006 noise log is quiet at the casing shoe. Noise at the casing shoe can be attributed to gas flow within the storage zone or cross flow between different sands of the storage zone. Results from the 2006 noise log indicate there was not gas movement in the storage zone or cross flow between sands of the storage zone.

Although the lines of the 2006 noise log are very close and appear to overlap, the digital data in the log header shows there is separation in the readings with no overlap.

Ms. Felts states that "another temperature survey from 2007 shows the shoe leak and a clear indication of a shallow leak above 900 ft." Similar to the 2000 temperature survey, the temperature anomaly in the shoe area was similar to previous temperature surveys that had been subsequently investigated with noise logs and confirmed not to be shoe leaks. The temperature anomaly at 900 feet is not typical of a casing leak. Leakage in the shallower section of the well, especially near the surface casing shoe would be expected to manifest as pressure in the surface casing annulus. The surface casing annulus was monitored weekly by SoCalGas and did not show evidence of increasing pressure prior to October 23, 2015.

⁵⁶ SED Reply Testimony (Felts), Bates SED RT 0501.

⁵⁷ Id.

⁵⁸ SED Reply Testimony (Felts), Bates SED RT 0504.

⁵⁹ SED Reply Testimony (Felts) at 14.

Ms. Felts states, "The most recent temperature survey in the file is dated 2013, and it shows no evidence of leaks, which is remarkable since SoCalGas apparently did nothing to the well to repair leaks." Another explanation is that although there were temperature anomalies noted in the annual surveys, these anomalies were investigated, and not confirmed to be leaks. 61

M. "Reason 13: SoCalGas Provided No Records of Pressure Gauge Readings from Before the Incident at Aliso Canyon."

Ms. Felts has explained that she had trouble accessing some of the data provided by SoCalGas to SED.⁶² This may explain why she includes this reason in her reply testimony. SoCalGas did in fact identify⁶³ pressure readings on SS-25 prior to October 23, 2015 in response to Question 2b of SED Data Request 47 dated November 27, 2019.⁶⁴ This claim is thus unsupported.

N. <u>"Reason 14: SoCalGas Provided No Records Showing Casing Integrity Inspections from 1973 to October 23, 2015."</u>

My opening testimony regarding casing inspection discusses SoCalGas practices in place on October 23, 2015, when the SS-25 incident occurred. Casing inspections were conducted on wells undergoing workovers as part of a well integrity program that began in 2007, as described in further detail in SoCalGas' Reply Testimony Chapter VI (Kitson):

In 2007, SoCalGas began a well integrity program to inspect, evaluate, and mitigate downhole well integrity issues. When working on a well (i.e., during a "re-work"), SoCalGas would replace the tubing, sealing element and wellhead valve, and would additionally inspect the casing. The inspection work included running ultrasonic inspection tools and pressure testing the well's casing for integrity as warranted.

⁶⁰ SED Reply Testimony (Felts) at 14.

⁶¹ Indeed, in response to SED's data request, Blade stated, "As part of the RCA, Blade analyzed the historical temperature, pressure, and noise logs for SS-25. ... The conclusion was that there was no pre-existing 7 in. casing leak. Additionally, there were no physical observations from well inspections and weekly pressure measurements that indicated a pre-existing problem." Ex. IV-5 at 5-6.

⁶² SoCalGas Reply Testimony Ex. I-10 (Tr. 97:12-13, 304:10-307:9 (Felts)).

⁶³ The documents were identified by Bates number because they had previously been provided to SED.

⁶⁴ SED Reply Testimony (Felts), Bates SED RT 0004 – SED RT 0008.

⁶⁵ SoCalGas Reply Testimony Ch. VI (Kitson) at 1-2.